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Abstract 
 
 

This paper investigates the statistical and economic importance of modeling regime 

switches in the context of stock return predictability with model uncertainty. Several 

interesting results are presented. First, when placing the linear and regime-switching models 

in juxtaposition, posterior odds ratios and model probabilities unanimously favor regime-

switching models. Second, the best predictors picked by linear models differ from those 

chosen by nonlinear models, which indicates that focusing on linear models alone could 

lead to potentially misleading inferences. Third, the support for regime switches is 

economically significant as measured by the utility loss perceived by investors who are 

forced to use linear forecasting models.  These results are robust to the use of different 

priors. 
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I. Introduction 

 

Are stock returns predictable? If so, which models and predictive variables are the best 

performers? Answers to these intriguing questions are of great importance to financial 

economists as well as investors. During the past two decades, an increasing number of 

academic studies have identified some market, macroeconomic, and calendar variables that 

appear to do a good job in terms of predicting stock returns. See, for example, Fama and French 

(1989), Pontiff and Schall (1998), Cooper, McConnell, and Ovtchinnikov (2006), among many 

others. 

Arguments against the findings of return predictability are often based on some statistical 

considerations. For instance, Lo and MacKinlay (1990) point out that because of the non-

experimental nature of stock market data, researchers should guard against data- snooping 

biases when searching for the best model. To address concerns of data-snooping biases, 

Bossaerts and Hillion (1999) (BH) implement several statistical model selection criteria that are 

designed to choose a model with the best out-of-sample validity. Although their results confirm 

in-sample return predictability, they find no evidence of out-of-sample forecasting power. A 

potential explanation offered by BH is that stock return predictability is subject to model 

nonstationarity, i.e.  model parameters tend to change over time. 

Due to the  lack  of  theoretical  guidance,  a  researcher  often  arbitrarily  chooses  a  set of 

predictors that either are convenient, intuitive, or seem to work from past experience. Hence 

studies in search of the best prediction model using the classical approach can be misleading 

because they fail to recognize the presence of model uncertainty that is intrinsic to such an 

exercise. Perhaps the best way to account for model uncertainty in the context of predicting 
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stock returns is the Bayesian model selection/averaging approach advocated in two articles. 

Cremers (2002) simultaneously compares the prediction performance of all linear models that 

are spanned by a set of 14 commonly used predictors and shows that the posterior probabilities 

are supportive of predictability.  Avramov (2002) demonstrates that in terms of forecasting 

power the Bayesian model averaging approach is superior to traditional model selection criteria 

as implemented in BH. 

The Bayesian approach adopted in Cremers and Avramov is undoubtedly a significant step 

forward. Unlike the frequentist approach, which draws inferences regarding the significance of 

a predictive variable in the context of one individual model, the Bayesian paradigm weighs the 

empirical evidence across all the models. This is achieved by calculating posterior model 

probabilities via Bayes’ rule. Therefore the Bayesian methodology solves the model uncertainty 

problem and is robust to model misspecification, at least within the general class of models 

under consideration. 

It is important to realize that, similar to many other papers in the literature, both Avramov 

and Cremers study exclusively linear normal prediction models. A priori, however, there is no 

compelling reason why we should confine our focus within the class of linear models. In fact, 

the choice is likely to be driven by analytical tractability more than anything else. In the 

Bayesian framework, exclusive focus on linear models is equivalent to placing a dogmatic prior 

belief that assigns zero probability to nonlinear models. Thus if the true data-generating process 

(DGP) is nonlinear, the choice of linear models could result in erroneous inferences. 

Tu and Zhou (2004) relax the normality assumption and investigate the effects of DGP 

uncertainty on investors’ portfolio decisions. They introduce the student t distribution with 

varying degrees of freedom to replace the normal distribution assumption. They find that 
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accounting for fat tails leads to nontrivial changes in parameter estimates and optimal port- 

folio weight. But the economic losses associated with the data-generating uncertainty are found 

to be relatively small. It should be pointed out, however, that Tu and Zhou’s approach still 

maintains the i.i.d. assumption and therefore, by design, they rule out predictability in stock 

returns. Empirical evidence presented in BH and Pesaran and Timmermann (1995) (PT) appear 

to support the notion that a nonlinear model that can account for model nonstationarity is 

needed. PT finds that the predictive power of various predictors changes through time. For 

example, they show that stock return predictability seemed quite low during the relatively calm 

market in the 1960s, but increased substantially in the volatile markets of the 1970s. Pontiff and 

Schall (1998) also document a structural difference in the predictive power of the book-to-

market ratio in pre- and post-1960 samples of Dow Jones Industrial Average index. 

Tu (2010) studies the importance of modeling regime switching when an investor faces 

mispricing uncertainty and parameter uncertainty. Tu shows that ignoring regime switching can 

result in significant certainty-equivalent losses that can exceed 10% per year during market 

downturns. Tu’s article focuses on investors’ beliefs on different asset pricing models and the 

associated asset allocation problem. Thus his paper can be viewed as a natural extension of 

Pastor and Stambaugh (2000)’s framework. In contrast, our paper emphasizes the role of 

regime switching in the context of predicting stock market returns. 

Lettau and Nieuwerburgh (2008) present interesting empirical evidence that adjusting 

financial ratios for shifts in the steady state mean of the economy can explain the seemingly 

incompatible in-sample and out-of-sample results regarding stock return predictability. While 

Lettau and Nieuwerburgh focus on the shifts in the mean, our approach is to model the regime 

shifts in the regression coefficients. In addition, our approach can account for model and 
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parameter uncertainty. Ang and Timmermann (2011) show that regime switching model 

matches many properties of asset returns, in particular skewness and fat tails, downside risk 

properties, and time-varying correlations.  Dangl and Halling (2012) find that predictive models 

with constant coefficients are dominated by models with time-varying coefficients.  

We contribute to the literature by extending the Bayesian analysis of stock return pre- 

dictability to nonlinear models as well as linear ones. More specifically, we consider the case 

where the underlying DGP follows the regime-switching models of Hamilton (1989). 

Analytical solutions are unavailable once we go beyond linear normal models with conjugate 

priors. Hence we follow the Gibbs sampling approach of Albert and Chib (1993) for the 

Bayesian analysis of regime-switching models. 

We find several significant results.  First, when placing the linear and regime-switching 

models in juxtaposition, the posterior odds ratios unanimously favor regime-switching models 

over their linear counterparts. Thus our results highlight the importance of considering non-

linear models. Second, the best predictors picked by linear models can differ from those chosen 

by nonlinear models. This confirms our intuition that confining our focus exclusively to linear 

models could result in potentially misleading inferences. Third, conditional on the set of 

predictors included in this paper, we find substantial evidence in favor of a regime-switching 

model that uses lagged stock returns and T-bill rates as its predictive variables. Last but not the 

least, the support for regime switches is economically meaningful as measured by the utility loss 

perceived by investors who are forced to rely only on linear forecasting models even after taking 

model uncertainty into account. 

This paper is organized as follows. Section II provides further justifications for regime- 

switching models and describes the empirical approach. Section III presents the main results. 
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Section IV evaluates the economic significance of incorporating regime switches when 

predicting stock returns. Section V offers some concluding remarks. 
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II. Methodology 

 

A. The Regime-Switching Prediction Model 

 

We start with the following linear predictive regression model: 

 

𝑟𝑡 = 𝑥𝑡−1 ∗ 𝛽 + 𝜀𝑡 ,   𝜀𝑡  ~ 𝑖. 𝑖. 𝑑. 𝑁 (0, 𝜎2)                                               (1) 

 

where rt denotes the return on a stock market index at time t in excess of the risk-free rate. 

xt−1≡ [1, xt−1] is a 1 × K vector consisting of a constant and the values of K − 1 lagged 

predictive variables (xt−1). Only lagged predictors are used to ensure they are present in an 

investor’s information set at the time of prediction.  β is the K × 1 vector of slope coefficients. 

This is the standard linear predictive model considered by the majority of articles in the extant 

literature on stock return predictability.  The differences among these papers are mainly in 

terms of which predictors are included or excluded in equation (1). The assumption that the 

return innovation 𝜀𝑡 is i.i.d.  normal is also a standard setup although it is well-known that stock 

returns do exhibit heteroscedasticity. In the Bayesian setting, the normality assumption is 

particularly convenient as it allows for analytical derivations of the posterior and predictive 

densities as long as the priors are chosen appropriately (Zellner, 1971). 

Using a data set of international stock market returns, BH notice that the in-sample and out-

of-sample forecasting performance of linear prediction models are very inconsistent. For 

example, they discover that even the best prediction models have no out-of-sample predictive 

power. They conclude that “the poor external validity of the prediction models that the formal 
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model selection criteria chose indicates model nonstationarity: the parameters of the ‘best’ 

prediction models change over time.” 

PT also presents convincing empirical evidence in support of model nonstationarity. 

Utilizing a recursive model selection and estimation strategy, they find it important to allow for 

“changes in the underlying process of excess returns in the U.S. stock market”. In particular, 

PT show that the behavior of two predictors, the inflation rate and interest rate, is closely 

related to economic “regime switches”. PT concludes that “in analyzing stock return 

predictability it is advisable to use forecasting procedures that allow for possible regime 

changes.” 

Given the interesting empirical evidence shown in PT and BH, we propose to incorporate 

regime switches in the slope coefficients of equation (1) to allow for the effects of structural 

breaks in the linear prediction model. To be precise, we consider the following two-state 

regime-switching model: 

 

 𝑟𝑡 =  𝑥𝑡−1 ∗ 𝛽𝑆𝑡
+ 𝜀𝑡 , 𝜀𝑡  ~ 𝑁 (0, 𝜎2), 𝑡 = 1,2, … , 𝑇                                     (2) 

 

𝛽𝑆𝑡
=  𝛽0 ∗ (1 − 𝑆𝑡) + 𝛽1 ∗ 𝑆𝑡                                                                (3) 

where 𝑆𝑡 = 0, 1 denotes the unobserved regime indicator. In other words, at any time t, the slope 

coefficient can switch between two values 𝛽0 and 𝛽1, contingent upon the realizations of the 

regime indicator 𝑆𝑡. A nontrivial question is how to model the time-series behavior of 𝑆𝑡. 
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Following the path-breaking work of Hamilton (1989), we assume that 𝑆𝑡 follows a two-state, 

first-order Markov process with the following transition probability matrix 

𝑃 = (
𝑞 1 − 𝑝

1 − 𝑞 𝑝
)                                                                            (4) 

 

where q = prob(𝑆𝑡 = 0|𝑆𝑡−1 = 0) and p = prob(𝑆𝑡= 1|𝑆𝑡−1 = 1). In this model, the transition 

probabilities are constant and the regime at time t depends only on the regime at t − 1, which 

makes it a tractable and flexible model. 

Due to their flexibility, regime-switching models have been successfully used to model 

random structural breaks in financial data, e.g.  Gray’s (1996) study on regime changes in 

interest rates. In the case of stock market returns, a two-state regime-switching model appears 

to be consistent with the common practice by investors and the financial press alike to 

categorize the market into a bull and a bear market. From a technical perspective, a regime-

switching model is particularly useful to characterize stock returns because it can capture 

negative skewness and leptokurtosis in stock returns by modeling the stock return distribution 

as a mixture of normal distributions.  For example, Veronesi (1999) presents a model of stock 

price where dividends follow a continuous-time Markov switching model. Compared with 

conventional models with no regime shifts, Veronesi’s model can capture many salient features 

of the stock returns, such as volatility clustering, leverage effects, and time-varying expected 

returns. Other examples include Hamilton and Susmel (1994) who study regime shifts in stock 

return volatilities.  Turner, Startz, and Nelson (1989) use a regime-switching model to 

characterize stock returns and volatilities. Maheu and McCurdy (2000) identify a high-return 

stable bull market regime and a low-return volatile bear market regime with a duration-
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dependent regime-switching model. Ang and Bekaert (2002) study the implication of regime 

shifts in stock returns for the asset allocation problem in international equity markets.  Given 

the empirical evidence documented in BH and PT, we expect the regime-switching model 

consisting of equations (2) and (3) to capture parameter changes that the linear predictive 

regression equation (1) is unable to model. 

 

B. Gibbs Sampler for Regime-Switching Models 

To account for model uncertainty, we follow the Bayesian approach advocated by Avramov 

(2002) and Cremers (2002) to analyze stock return predictability. However, unlike the case of 

linear prediction models studied by Avramov and Cremers where the posterior densities are 

known in closed-forms, Bayesian analysis of regime-switching models does not have analytical 

solutions.   Hence  we  rely  on  the  Markov  Chain  Monte  Carlo  (MCMC)  approach for 

posterior analysis.  To be precise, we use the Gibbs sampling technique introduced by Albert 

and Chib (1993) to the class of regime-switching model. 

A key feature of the Bayesian approach is that unknown model parameters are treated as 

random variables.  Bayes’ rule dictates that 

𝑝(𝜃|𝑦)  ∝ 𝑝(𝑦|𝜃)𝑝(𝜃)                                                                            (5) 

where 𝑝(𝜃) denotes the prior density for model parameters, 𝑝(𝑦|𝜃) the likelihood function, 

and 𝑝(𝜃|𝑦) the posterior density. In the context of the regime-switching model, our goal is 

to derive the following joint posterior density: 

 

𝑝(𝑆̃𝑇,𝛽0, 𝛽1, 𝜎2, 𝑞, 𝑝|𝑦̃𝑇) = ℎ(𝛽0, 𝛽1, 𝜎2|𝑆̃𝑇,𝑦̃𝑇)ℎ(𝑞, 𝑝|𝑆̃𝑇,)ℎ(𝑆̃𝑇,|𝑦̃𝑇)                           (6) 
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where 𝑆𝑇 = [𝑆1,𝑆2, … , 𝑆𝑇,]
𝑡
 denotes the vector of latent regimes and 𝑦̃𝑇  denotes the data. Equation 

(6) uses the fact that conditional on probabilities, p and q, are independent of other model 

parameters.  In addition, conditional on 𝑆̃𝑇   equation (2) and (3) are simply regression models 

with a known dummy variable 𝑆𝑡.  These conditioning features of the model allow us to use the 

Gibbs sampling technique for Bayesian inference. When the joint posterior density is of an 

unknown form, the Gibbs sampler allows us to split up the parameter space into blocks of 

parameters for which it is possible to specify the full conditionals.  The idea is to recursively draw 

from the conditional densities for the various blocks of parameters until convergence is achieved. 

The Gibbs sampler for regime-switching models consists of the following steps: 

1. Generate a whole block of 𝑆̃𝑇 from its conditional distribution 

ℎ(𝑆̃𝑇,|𝛽0, 𝛽1, 𝜎2, 𝑞, 𝑝, 𝑦̃𝑇)  

2. Generate the transition probabilities, p and q from ℎ(𝑞, 𝑝|𝑆̃𝑇)  

3. Generate  𝛽0, 𝛽1, 𝜎2 from ℎ(𝛽0, 𝛽1, 𝜎2|𝑆𝑇,𝑦̃𝑇)                     

Note that, in step 1, Albert and Chib (1993) use a single-move strategy to draw 𝑆̃𝑇 , we  

Instead use a computationally more efficient multi-move algorithm proposed by Chib (1996) and 

Kim and Nelson (1998). Readers are referred to above-mentioned articles for details about the 

multi-move algorithm. The following subsection provides further details on the second and third 

steps. We cycle through the Gibbs sampling procedure for 20,000 iterations. To alleviate the 

transient effects induced by initial values, we discard the first 10,000 iterations, which are treated 

as the “burn-in” period. 
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C. Prior Specifications 

 

To  implement  the  second  step  and  draw  q  and  p,  we  use  the  beta  distributions  as 

conjugate priors for the transition probabilities. 

q~ B(q|u00 , u01)                                                                            (7) 

 

p~ B(p|u11, u10)                                                                     (8) 

 

where 𝑢𝑖𝑗  , i, j  = 0, 1 are known hyperparameters of the priors. B(z|α, δ) denotes a beta 

distribution with the expected value 
𝛼

𝛼+𝛿
  and the variance 

𝛼𝛿

(𝛼+𝛿)2(𝛼+𝛿+1)
 .  To ensure that our base 

prior for q and p is uninformative, we set α = δ = 1. In this case, the beta distribution reduces to 

the uniform distribution. Assuming independence, the joint prior for q and p is given by 

𝐵(𝑝, 𝑞) ∝ 𝑝𝑢11−1(1 − 𝑝)𝑢10−1𝑞𝑢00−1(1 − 𝑞)𝑢01−1                                                 (9) 

 

The likelihood function in this case is given by 

𝐿 = 𝑝𝑛11(1 − 𝑝)𝑛10𝑞𝑛00(1 − 𝑞)𝑛01                                                  (10) 

where 𝑛𝑖𝑗 refers to the transitions from regime i to j, which can be easily counted given the 

regime realizations of 𝑆̃𝑇 generated from step 1. With Bayes’ rule in equation (5), we can 

combine the prior distribution and the likelihood function to obtain the following joint posterior 

distribution p and q: 

ℎ(𝑞, 𝑝|𝑆̃𝑇) ∝ 𝑝𝑢11+𝑛11−1(1 − 𝑝)𝑢10+𝑛10−1𝑞𝑢00+𝑛00−1(1 − 𝑞)𝑢01+𝑛01−1                   (11) 

 

This suggests that the posterior distribution is given by two independent beta distributions:  

𝑞~ 𝐵(𝑞|𝑢00 + 𝑛00, 𝑢01 + 𝑛01)                                                           (12) 
 

𝑝~ 𝐵(𝑝|𝑢11 + 𝑛11, 𝑢10 + 𝑛10)                                                         (13) 
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from which p and q are drawn. 

To implement step 3, we follow standard practice in Bayesian analysis and specify con- 

jugate priors for β and  𝜎2 . The choice of conjugate priors is indispensable for the Gibbs 

sampler as it allows us to obtain the posterior in closed-forms. Specifically, we assume a 

normal prior for  𝛽̃ ≡ [𝛽0, 𝛽1], 

𝛽̃~𝑁(𝑏0, 𝑉0)                                                                                        (14) 

where 𝑏0  and 𝑉0  are known hyperparameters.   By the conjugacy property, the posterior 

distribution is given by 

 

𝛽̃|𝜎2, 𝑆̃𝑇,𝑦̃𝑇  ~ 𝑁 (𝑏1, 𝑉1)                                                                       (15) 
 

where  

 
𝑉1 = (𝑉0

−1 + 𝜎−2𝑋′𝑋)−1                                                                       (16) 
 

𝑏1 = 𝑉1(𝑉0
−1𝑏0 + 𝜎−2𝑋′𝑌)                                                                   (17) 

 

 

 X and Y are the matrix notation for the regressors and dependent variable respectively.  

 

We specify an inverted Gamma distribution as a conjugate prior for 𝜎2, 

 

                                                                𝜎2~ 𝐼𝐺 (
𝑐0

2
,

𝑑0

2
)                                                                    (18) 

where 𝑐0 and 𝑑0 are the known hyperparameters. The posterior distribution is given by 

 

𝜎2|𝛽̃, 𝑆̃𝑇,𝑦̃𝑇  ~ 𝐼𝐺 (
𝑐1

2
,

𝑑1

2
)                                                                    (19) 

 

where 𝑐1 = 𝑐0 + T and 𝑑1 = 𝑑0 +(𝑌 − 𝑋𝛽̃)′(𝑌 − 𝑋𝛽̃). 
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Our objective is to minimize the impact of the priors on the posterior estimates and, 

especially, on the model comparisons. Accordingly, we employ relatively uninformative (i.e. 

imprecise) priors. As a result, the posterior distributions of the model parameters are driven 

primarily by the sample data. Our uninformative or “base” priors are chosen as follows. First, 

we specify that 𝑢00 = 𝑢01 = 1 and 𝑢10 = 𝑢11 = 1.  In this case, the priors for q and p become 

uniform distributions.  Second, we set the normal prior for the slope coefficients to be N (0, 

100). Third, the prior parameters for 𝜎2 are chosen so that the prior contains only about as 

much information as a sample of 4 observations and its mean match the sample variance. 

We also performance a prior sensitivity analysis to ensure our results are robust to 

variations in the prior. Specifically, we also consider the following “no-predictability” prior, 

which specifies that the normal prior for the slope coefficients for all the predictive variables to 

have a mean of zero (the prior mean for the constant is set to the sample mean) and a variance 

of 1. Other aspect of the no-predictability prior is the same as our base prior. Hence investors 

who hold this no-predictability prior have a strong view that stock returns are unpredictable 

using any of the predictive variables. 

To further disturb the prior specifications, we replace the uninformed base prior with priors 

“informed” by analysis of pre-sample data (i.e. training samples). We employ two sets of 

training samples. The first training sample spans a 10-year period from January 1934 to 

December 1943. The second training sample covers a 20-year period from January 1934 to 

December 1953.  We report the results of this sensitivity analysis in Section III. 

 

D. Bayesian Model Comparison 

One of the objectives of this article is to compare the performance of linear models versus 

regime-switching models. In the Bayesian approach, model comparison is conceptually simple 

but computationally burdensome due to the need to calculate marginal likelihood. To set 
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notation, assume that we have m different models.  We rewrite the Bayes’ rule as follows: 

𝑝(𝜃𝑖|𝑦, 𝑀𝑖) =
𝑝(𝑦|𝜃𝑖, 𝑀𝑖)𝑝(𝜃𝑖

|𝑀𝑖)

𝑝(𝑦|𝑀𝑖)
,   𝑖 = 1, … , 𝑚,                                             (20) 

 

where 𝑀𝑖 stands for the ith model that depends on the parameter vector 𝜃𝑖.  𝑝(𝑦|𝑀𝑖) is called the 

marginal likelihood (ML) and is given by 

𝑝(𝑦|𝑀𝑖) = ∫ 𝑝(𝑦|𝜃𝑖, 𝑀𝑖) 𝑝(𝜃𝑖|𝑀𝑖)𝑑𝜃𝑖.                                             (21) 

 

The integration in equation (21) is often difficult to compute directly, especially for high- 

dimensional problems. A popular and very general approach to calculate the marginal 

likelihood was proposed by Gelfand and Dey (1994) (GD): 

𝑀𝐿̂−1  = 𝐸 [
𝑔(𝜃)

𝑝(𝑦|𝜃𝑖, 𝑀𝑖)𝑝(𝜃𝑖
|𝑀𝑖)

| 𝑦, 𝑀𝑖]                                                   (22) 

 

where the denominator on the right hand side of equation (22) is simply the product of the 

model-specific likelihood and prior. 𝑔(𝜃) is a tuning function and has to be chosen carefully for  

GD’s  method  to  work.    We follow Geweke (1999) and use a truncated multivariate 

normal density.    Let  𝜃 and Σ̂  be estimates of E(𝜃|𝑦, 𝑀𝑖) and var(𝜃|𝑦, 𝑀𝑖), which can be 

easily obtained  from  the  posterior  simulator.   Moreover, for some probability p ∈ (0, 1), let 

Θ̂ denote the support of 𝑔(𝜃), which is defined by 

 

Θ̂ = {𝜃: (𝜃 − 𝜃)
′ 

Σ̂−1(𝜃 − 𝜃) ≤ 𝜒1−𝑝
2 (𝑘)}                                           (23) 
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where 𝜒1−𝑝
2 (𝑘) is the (1 − p)th percentile of the Chi-squared distribution with k degrees of  

freedom and k is the dimension of 𝜃. Geweke (1999) suggests that we choose the multivariate 

Normal  density truncated to the region Θ̂,  

 

𝑔(𝜃) =
1

𝑝(2𝜋)
𝑘
2

|Σ̂|
−

1

2𝑒𝑥𝑝 [−
1

2
(𝜃 − 𝜃)

′ 
Σ̂−1(𝜃 − 𝜃)] 1(𝜃 ∈ Θ̂)                                   (24) 

 

where  1(𝜃 ∈ Θ̂) is  the  indicator  function.   As pointed out by Geweke, the computational 

costs  of  experimenting  with  several  different  values  of  p is  quite  low.   In our empirical 

implementation, we find our results are insensitive to these choices. 

Once the marginal likelihood is calculated for each model, model comparison is relatively 

straightforward in the Bayesian approach. For example, to compare two competing models, we 

can calculate the posterior odds ratio (POR), which is defined as the the ratio of two posterior 

model probabilities: 

𝑃𝑂𝑅𝑖𝑗 =
𝑝(𝑀𝑖|𝑦)

𝑝(𝑀𝑗|𝑦)
                                                                              (25) 

The posterior model probabilities are easily derived from Bayes’ rule 

𝑝(𝑀𝑖|𝑦) =
𝑝(𝑦|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝑦)
=

𝑝(𝑦|𝑀𝑖)𝑝(𝑀𝑖)

∑ 𝑝(𝑦|𝑀𝑖)𝑝(𝑀𝑖)  𝑀
𝑖=1

  ,  𝑖 = 1, … , 𝑀,                                      (26) 

 

where 𝑝(𝑀𝑖) is the prior model probability for the ith model. Substituting equation (26) into 

equation (25), we have 

𝑃𝑂𝑅𝑖𝑗 =
𝑝(𝑦|𝑀𝑖)𝑝(𝑀𝑖)

𝑝(𝑦|𝑀𝑗)𝑝(𝑀𝑗)
                                                                            (27) 
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Where 
𝑝(𝑀𝑖)

𝑝(𝑀𝑗)
  is known as the prior odds ratio.  A natural choice to assume that the prior  model 

probabilities are the same across all models. In this case, the POR is also known as the Bayes 

factor, defined as: 

𝐵𝐹𝑖𝑗 =
𝑝(𝑦|𝑀𝑖)

𝑝(𝑦|𝑀𝑗)
                                                                                (28) 

  

which is simply the ratio of marginal likelihood values for the two models that we want to 

compare.  
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III. Empirical Evidence 
 
 

A. Data 

 

In this study we focus on the predictability of the excess monthly returns of the value- 

weighted index obtained from the Center for Research in Security Prices (CRSP) database. As 

a proxy for the risk-free rate, we use the one-month U.S. Treasury bill yield from the CRSP 

files. The main sample period is from January 1954 to December 2005, a total of 624 

observations. The choice of this sample period is similar to previous studies in the literature on 

stock return predictability. To formulate the training sample priors, we also collect the pre-

sample data spanning a 20-year period from January 1934 to December 1953. 

At the beginning of each  month  we  allow  the  investor  to  choose  from  a  base  set  of 

five predictors, including one market variable and four business cycle-related variables. As 

pointed out by Honda and Tiwari (2006), the business cycle-related variables are motivated by 

Fama and French (1989) and have attracted a lot of attention in the literature. They include 

excess CRSP value-weighted index monthly return lagged by one month, lagged one-month 

Treasury bill yield, lagged credit spread calculated by taking the difference between monthly 

Moody’s BAA bond return and AAA bond return, lagged term premium constructed by taking 

the difference between 10-year Treasury constant maturity rate and 3-month Treasury bill rate, 

and the dividend yield. As suggested by Campbell (1991) and Hodrick (1992), the one-month 

T-bill yield is stochastically detrended by subtracting its 12-month backward moving average. 

The dividend yield is constructed by dividing the cumulative dividends over the previous 12 

months by the current index level. All interest rate-related data are obtained from St. Louis 

Federal Reserve Bank’s web site. The long- term interest rate data used in our training sample 
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are obtained from Robert Shiller’s web site. It  should  be noted  that the  number  of predictors  

that we  use are  less than  those chosen by Avramov (2002) and Cremers (2002). This is due to 

the fact that the MCMC approach used in this article is significantly more demanding in terms 

of computational costs than Avramov and Cremers, who focus exclusively on linear models 

with known analytical solutions. 

Table I provides some descriptive statistics for all the variables. The numbers are ex- 

pressed in percentages. We report the mean, standard deviation, skewness, excess kurtosis, as 

well as the first order autocorrelation. Consistent with previous findings, we find the four 

business cycle-related variables, Treasury bill rate, credit spread, term premium, and dividend 

yield, show very high persistence with their first-order autocorrelation all above 0.8. In contrast 

the lagged monthly value-weighted CRSP index returns exhibits almost no autocorrelation. In 

addition, the interest rate variable has a very large excess kurtosis, indicating that it is unlikely 

to be normally distributed. The stock market return variable also appears more volatile than 

other predictive variables. 

 

B. Pairwise Model Comparison 

 

To sharpen the contrast between linear and the regime-switching forecasting models, we 

only consider linear models spanned by the five predictors and their regime-switching 

competitors. In other words, we exclude models where some of the predictors follow the 

regime-switching process and others do not. This choice allows us to make a pairwise 

comparison of linear versus regime-switching models. All models include the constant term 

and we also consider the null model, where the constant is the only regressor. This leaves us 
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with a total of 64 models evenly divided between linear and regime-switching models. 

The pairwise model comparison is made by calculating Bayes factors for the 32 pairs of 

models. We first calculate the marginal likelihood values of all the linear and regime- switching 

models based on the GD method using outputs from the posterior simulators. Then the Bayes 

factors are computed using equation (28) (ML of regime-switching model over ML of linear 

model). Table II reports the results for the 32 model pairs. The model pairs are distinguished by  

the predictors included. For example SRCTD stands for the model pair that includes the 

following variables (in addition to the constant):  lagged stock returns (S), one-month Treasury 

bill rate (R), credit spread (C), term premium (T), and dividend yield (D). The Bayes factors are 

shown on the natural logarithm scale and multiplied by 2 to be consistent with the classification  

made by Kass and Raftery (1995), who suggest the following interpretations. 

 

2loge(BF10) Evidence against H0 

0 to 2 Not worth more than a bare mention 2 

to 6  Positive 

6 to 10 Strong 

> 10 Very Strong 

 

Based on this classification, 27 out of the 32 model pairs show very strong evidence against 

linear model specifications. Only in two cases (SCTD and SRCTD), the regime switching 

models do not appear to have an edge over their linear counterparts. Moreover, the evidence 

against linear models appears very substantial since the majority of Bayes factors are well 
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above the threshold levels set by Kass and Raftery. We also notice that the support for regime-

switching models appears to decline as the number of predictors becomes large. Overall the 

results from table II are consistent with earlier findings (e.g. BH and PT) and demonstrate the 

importance of including nonlinear models when tackling stock return predictability problems. 

 

C. Posterior Model Probabilities 

While Bayes factors work great for pairwise model comparison, they do not reveal which 

one is the best-performing predictor or individual model. To this end, we need to calculate 

posterior model probabilities as defined in equation (26). Assuming equal prior model 

probabilities, it is easy to see that 𝑝(𝑀𝑖|𝑦),  the posterior  model probability for model i, is the 

ratio of its own marginal likelihood over the sum of marginal likelihood for all the models. 

To check the performance of various predictors, we report the cumulative posterior prob- 

abilities (CPP) of the five predictive variables in Table III. The Bayesian model averaging 

approach addresses the uncertainty in model specifications by taking a posterior probability 

weighted average model. CPP is the quantity that indicates the probabilities that each of the 

predictive variables appears in the weighted prediction model. To illustrate, suppose credit 

spread receives a CPP of 30%. This means that credit spread should appear in the weighted 

prediction model with a probability of 30%. Hence it is a very useful metric that summarizes 

the empirical support for each of the predictive variables. It is also used by Avramov (2002) to 

gauge the performance of linear forecasting models in the presence of model uncertainty. 

We report the CPP for three cases. The first case takes the subset of linear forecasting 

models. The second case focuses on the subset of regime-switching models. The third case is 
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the all-inclusive model space. In the linear model case, we find that the lagged one-month 

Treasury bill rate receive almost all the weight (> 99%). Thus if constrained within the set of 

linear models, we would only pick the short-term risk-free rate as a reliable predictor. 

Turning to the regime-switching model case, we find some interesting results. First of all, 

CPP suggests that both lagged excess CRSP index returns and the lagged Treasury-bill rates be 

included in the optimal prediction model with a probability of one. By comparison, the other 

three predictors (credit spread, term premium, and dividend yield) receive nearly zero 

probabilities in the weighted model, which differs from the linear model case. Therefore, it 

appears that an econometrician’s prior on the scope of models to be investigated has a 

nontrivial impact on our inference regarding the role of predictive variables. This leaves us to 

wonder which set of conclusions we should trust. The puzzle is solved by looking at the third 

case, which shows that the CPP for the all-inclusive case is in complete congruence with the 

regime-switching model subset. In other words, the linear models receive almost zero posterior 

model probability in the overall optimal weighted model. 

Table  IV  reports  the  posterior  model  probability  and  the  ranking  of  the  64  models 

under various priors. In panels A, B, C, and D, we show the results under the base prior, the no-

predictability prior, the prior based on the 10-year training sample from 01/1934 to 12/1943, 

and the prior based on the 20-year training sample from 01/1934 to 12/1953, respectively. We 

note that in all cases, regardless of the priors implemented, the posterior model probability 

exclusively concentrates on the regime-switching model that include both the lagged CRSP 

index return and lagged Treasury bill rate as predictors. The remaining 63 models practically 

receive a posterior model probability of zero. Therefore, conditional on the set of models and 

predictors considered in this paper, we find the following individual model that uses lagged 
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value-weighted CRSP index return  (VW)  and  Treasury  bill  rate (TB) as its predictors is 

essentially equivalent  to  the  overall  weighted  prediction  model with its posterior model 

probability equal to one. 

𝑉𝑊𝑡 = 𝑏0
0(1 − 𝑆𝑡) + 𝑏0

1𝑆𝑡 + 𝑏1
0(1 − 𝑆𝑡)𝑉𝑊𝑡−1 + 𝑏1

1𝑆𝑡𝑉𝑊𝑡−1 + 𝑏2
0(1 − 𝑆𝑡)𝑇𝐵𝑡−1 + 𝑏2

1𝑆𝑡𝑇𝐵𝑡−1 + 𝜀𝑡  
(29) 

  

Table V reports the posterior means and standard deviations for the various model 

parameters in equation (29). The posterior density plots are also shown in Figure 1. Because of 

the fact that this best individual model is virtually identical to the weighted prediction model, 

these results can be interpreted as those of the optimal weighted model as well. Several 

interesting findings emerge from these results. 

First, we notice that our posterior parameter estimates for the transition probabilities 

indicate the regimes are not as persistent as those reported by Tu (2010).  We attribute the 

difference to the fact that Tu imposes a comparatively strong prior on these parameters. For 

example, his prior is P = 91.67% and Q = 83.33%. In contrast, we are reluctant to impose such 

a strong prior and prefer to choose a non-informative prior and let the data speak for itself. 

Second, we find that the constant term under regime zero is significantly negative, and vice 

versa under regime one.  This result, combined with the fact that q is relatively small, indicates 

regime zero can be interpreted as the infrequent and less persistent “bear market” regime. On 

the other hand, regime one can be interpreted as a more long-lasting “bull market” regime. For 

instance, the average duration of the “bull market” regime is approximately 4.6 months, 

whereas the “bear market” regime only lasts for an average of 1.6 months. This interpretation is 

further confirmed by inspecting Figure 2, which shows that most of the time, the bull market 
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regime plays a dominant role. However, during periods of uncertainty the bear market regime 

appears to take over. For example, the “bull market” regime appears to be interrupted by 

episodes of market uncertainty such as the oil crisis in the 1970s, the 1987 market crash, the 

liquidity crisis triggered by the fallout of the hedge fund Long-term Capital Management, and 

burst of the internet bubble after the year 2000. 

Third, the slope coefficient for lagged stock market returns under regime zero is sig- 

nificantly positive whereas the coefficient under regime one is slightly negative. This is 

consistent with the evidence that stock returns in bear markets are more persistent. On the other 

hand, under the bull market regime, the CRSP index seems to be characterized by reversal 

rather than momentum in its returns as shown by the posterior parameter values. If we look at 

the coefficients for the lagged Treasury bill rate, we find that the relation between stock market 

return and short-term interest rate is negative in both regimes. This is not surprising given the 

fact that stock market often reacts favorably to announcements of interest rate cuts and 

unfavorably to news of rate hikes by the Federal Reserve Bank. 
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IV. Economic Significance 

 

Kandel and Stambaugh (1996) (KS) study stock return predictability from an asset- 

allocation perspective. They show that it is important to consider not only statistical evidence 

but the economic significance of predictability as well. Motivated by their study, we  consider  

a  risk-averse  Bayesian  investor  with  a  one-month  investment  horizon.   The investor’s 

objective is to maximize the expected utility by allocating his initial wealth WT in  the  value-

weighted  CRSP  index  and  the  risk-free  asset  at  the  end  of  month  T .  Let 𝜔 denote the 

vector of investment weights.  Following Pastor and Stambaugh (2000), we assume the investor 

will choose w so as to maximize the mean-variance objective function: 

 

max
w

(𝜔′𝐸 −
𝐴

2
𝜔′𝑉𝜔)                                               (30) 

 

where A is interpreted as the investor’s coefficient of relative risk aversion. To capture 

different degrees of risk aversion, we study two cases where A = 5 and 10 in our empirical 

work. E and V denote the first two moments of predictive density function of asset returns. For 

models presented in this article,  the predictive density cannot be solved analytically. However, 

it is straightforward to use the posterior outputs from the Gibbs sampler and draw samples from 

the predictive density. Details of the algorithm are explained in Albert and Chib (1993).  It is 

well known that the solution to (30) is given by𝜔 =
1

𝐴
𝑉−1𝐸. 

The metric for gauging the economic significance of modeling regime switching in fore- 

casting stock returns is defined as follows. Let 𝜔𝑅𝑆 denote the optimal asset allocation under 

the propose regime switching model. Likewise, let 𝜔𝐿𝑖𝑛𝑒𝑎𝑟 denote the optimal asset allocation 

under an alternative linear forecasting model of stock market returns. Note that we use the same 
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prior belief on both the regime switching and the linear models. 𝐶𝐸𝑅𝑆 and 𝐶𝐸𝐿𝑖𝑛𝑒𝑎𝑟  are the 

certainty equivalent returns associated with 𝜔𝑅𝑆  and 𝜔𝐿𝑖𝑛𝑒𝑎𝑟  respectively, where 

𝐶𝐸𝑅𝑆 = 𝜔𝑅𝑆
′ 𝐸 −

𝐴

2
𝜔𝑅𝑆

′ 𝑉𝜔𝑅𝑆                                                               (31) 

 

𝐶𝐸𝐿𝑖𝑛𝑒𝑎𝑟 = 𝜔𝐿𝑖𝑛𝑒𝑎𝑟
′ 𝐸 −

𝐴

2
𝜔𝐿𝑖𝑛𝑒𝑎𝑟

′ 𝑉𝜔𝐿𝑖𝑛𝑒𝑎𝑟                                       (32) 

 

Note that the E and V are predictive moments under the regime switching model. The proposed 

metric is the difference 𝐶𝐸𝑅𝑆 − 𝐶𝐸𝐿𝑖𝑛𝑒𝑎𝑟 . It can be viewed as the certainty equivalent loss to an 

investor who would like to allocate his asset in accordance with the regime-switching model 

but is forced to accept the allocation under an alternative (suboptimal) linear model.  This 

metric is first proposed by KS and has been widely applied in many studies. 

Table VI reports the asset allocations under the optimal regime switching  model  as shown 

in equation (29) as well as the two alternative linear forecasting model. The first linear model 

has lagged CRSP index returns and lagged short-term interest  rate  as two predictive variables. 

Note that this is the linear counterpart of the optimal regime-switching model. For the second 

linear model, we choose the best model (as ranked by posterior model probability) when only 

linear models are considered. In this case, the lagged short-term interest rate turns out to be the 

only predictor (in addition to the constant term). We also present results under two priors: the 

base prior and the no-predictability prior. 

First, we notice that under both models the risk-averse Bayesian investor chooses to take a 

short position in the stock market, which is attributable to the fact that our model is predicting a 

negative return in the coming month. However the main difference is that under the regime-
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switching model, the investor is willing to commit  to  a  substantially larger position than under  

the  alternative  linear  forecasting  models.  Hence  it  appears that incorporating the possibility of 

regime-switching has a significant impact on investor’s portfolio decisions. In our view, this result 

could be driven by the fact that  if  regime switches in stock returns arepredictable, then the 

investors could afford to take a larger position, knowing that the regime risks are under control. On 

the other hand, an investor who are forced to use the linear model has to face the uncertainty 

introduced by the regime switches. In this suboptimal case, a natural way to hedge the regime risks 

is to hold more risk-free assets, which explains the observed smaller allocation to the stock market. 

Second, we find that modeling regime switches for the purpose of predicting stock returns 

is economically very important. Recall that our measure of economics significance can be 

interpreted as utility loss perceived by investors who are forced to ignore regime switches and 

instead allocate funds based upon a suboptimal linear model. The metric is expressed in terms 

of an annual certainty equivalent risk-free rate.  From table VI, we find under the base prior the 

annualized certainty equivalent loss from ignoring regime switches can range from 17.75% to 

more than 38%. Even when the investor has a strong prior belief that stock returns are 

unpredictable, the certainty equivalent loss can still be quite significant and range from 1.88% 

to 4.69%. It is important to note that in panels B and D the alternative linear forecasting model 

has already taking into account the effects of model uncertainty (in the space of all linear 

models). Hence the certainty equivalent metric reported here reflects the incremental economic 

benefits of allowing for regime switches beyond model uncertainty. This demonstrates that 

modeling regime switches is economically meaningful for stock return predictability. 
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V. Conclusion 

 

Previous studies in the stock return predictability literature find evidence of model 

nonstationarity. To model the time-variation in model parameters, we propose to use the regime 

switching model in this article. We find important evidence, both statistically and 

economically, in support of modeling regime switches in stock return predictability. 

To sum up, we find statistical evidence as showcased in the posterior odds ratios and 

posterior model probabilities strongly favors regime-switching models. In addition, the best 

predictors picked by linear models are different from those chosen by nonlinear models, which 

highlights in the importance of accounting for model uncertainty and indicates that focusing on 

linear models alone could lead to potentially misleading inferences. Moreover, the support for 

regime switches appears economically significant as measured by the utility loss perceived by 

investors who are forced to use an alternative linear forecasting model even after taking into 

account model uncertainty (in the linear model space). Conditional on the set of predictors 

included in this article, we find substantial evidence in favor of a regime- switching model that 

uses lagged stock returns and Treasury bill rates as its predictors. Our conclusions are robust to 

the use of different priors. 

Unlike previous studies that focus exclusively on linear models, our approach is more 

flexible in that it can account for both model uncertainty and nonlinearity in the underlying 

DGP. However, the tradeoff is that computational costs are significantly higher than the case of 

linear models as analytical solutions are no longer available. Hence, we can only include a 

modest number of predictors. 

For future research, we can extend the model by incorporating regime switches in stock 
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return volatilities. One benefit is that it can account for stock return heteroscedasticity. In 

addition it might also help us further explore the relation between return volatility and the 

regimes identified in this article. 
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Table  I 

Descriptive Statistics 

This table reports some descriptive statistics for the data set used in  this  study.  The  variables 

include: excess monthly returns of value-weighted CRSP index (St), lagged value-weighted CRSP 

index returns (St−1), one-month Treasury Bill rates (R), credit spread (C), term premium (T), and 

dividend yield (D). The sample period is from January 1954 to December 2005. 

 

Variable Mean Std. Dev. Skewness Ex. kurtosis ρ1 

St 0.58335 4.1474 −0.42845 1.9907 0.0531 

St−1 0.59098 4.1514 −0.43055 1.9767 0.0536 

R 0.015786 0.98316 −0.27572 3.7047 0.8154 

C 0.94963 0.41612 1.4201 2.2034 0.9720 

T 1.3999 1.1882 −0.11784 −0.13130 0.9532 

D 3.1640 1.0379 −0.10912 −0.55437 0.9890 
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Table  II 

Bayes Factors for Pairwise Model Comparison 
 

This table reports the (logarithm of) Bayes Factors for pairs of regime-switching and linear models 

that include the same predictors: lagged value-weighted CRSP index returns (S), one-month Trea- 

sury Bill rates (R), credit spread (C), term premium (T), and dividend yield (D). Constant refers 

to the models where no predictors are included (except for the constant). 

 

Model 2loge(BF ) Model 2loge(BF ) 

Constant 101.4 SRC 78.8 

S 110.2 SRT 102.0 

R 54.4 SRD 91.0 

C 15.0 SCT 89.4 

T 3.2 SCD 14.0 

D 37.6 STD 38.2 

SR 156.4 RCT 94.8 

SC 86.8 RCD 34.6 

ST 113.8 RTD 31.6 

SD 85.0 CTD 22.8 

RC 29.2 SRCT 31.8 

RT 73.0 SRCD 8.0 

RD 18.6 SRTD 77.2 

CT 46.0 SCTD 1.2 

CD 22.4 RCTD 7.8 

TD 34.0 SRCTD 1.2 
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Table  III 

Cumulative Posterior Probabilities of the Predictive Variables 
 

 
This table reports cumulative posterior probabilities of the five predictive variables: lagged value- 

weighted CRSP index returns (S), one-month Treasury Bill rates (R), credit spread (C), term pre- 

mium (T), and dividend yield (D).. We show the cumulative posterior probabilities for three different 

cases: a subset with only linear models, a subset with only regime-switching models, and the all- 

inclusive model space. 

 

Variable Linear Model Regime-Switching Model Overall 

S 0.00008 1.00000 1.00000 

R 0.99658 1.00000 1.00000 

C 0.00000 0.00000 0.00000 

T 0.00002 0.00000 0.00000 

D 0.00000 0.00000 0.00000 
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Table IV 

Sensitivity of Model Comparison to Prior Specifications 

This table presents model rankings and posterior probabilities for 64 linear and regime switching 
models. Predictive variables include: lagged value-weighted CRSP index returns (S), one-month 
Treasury Bill rates (R), credit spread (C), term premium (T), and dividend yield (D). We  also 
consider the case where only a constant is included in the model (Constant). Panels A, B, C, and 
D report the results for our base uninformative prior, the no-predictability prior, and priors based 
on two training samples. 

Panel A: Base Prior 
Linear Model Prob Rank Regime-Switching Model Prob Rank 

Constant  9 Constant  3 
S  10 S  2 

R  8 R  5 

C  30 C  26 

T  12 T  11 

D  32 D  24 

SR  14 SR 1 1 

SC  34 SC  13 

ST  17 ST  4 

SD  39 SD  18 

RC  33 RC  25 

RT  16 RT  7 

RD  35 RD  29 

CT  28 CT  19 

CD  54 CD  48 

TD  49 TD  40 

SRC  41 SRC  22 

SRT  21 SRT  6 

SRD  46 SRD  23 

SCT  38 SCT  15 

SCD  50 SCD  44 

STD  53 STD  42 

RCT  43 RCT  20 

RCD  45 RCD  37 

RTD  55 RTD  47 

CTD  57 CTD  56 

SRCT  36 SRCT  27 

SRCD  51 SRCD  61 

SRTD  52 SRTD  31 

SCTD  60 SCTD  59 

RCTD  62 RCTD  58 

SRCTD  64 SRCTD  63 
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Panel B: No-predictability Prior 
Linear Model Prob Rank Regime-Switching Model Prob Rank 

Constant  18 Constant  16 
S  19 S  9 

R  13 R  12 

C  40 C  26 

T  21 T  17 

D  44 D  33 

SR  22 SR 1 1 

SC  42 SC  3 

ST  29 ST  8 

SD  50 SD  10 

RC  38 RC  32 

RT  24 RT  14 

RD  43 RD  23 

CT  39 CT  27 

CD  60 CD  46 

TD  56 TD  30 

SRC  47 SRC  6 

SRT  31 SRT  2 

SRD  52 SRD  11 

SCT  45 SCT  7 

SCD  58 SCD  35 

STD  57 STD  15 

RCT  49 RCT  34 

RCD  51 RCD  37 

RTD  59 RTD  25 

CTD  62 CTD  53 

SRCT  41 SRCT  4 

SRCD  54 SRCD  20 

SRTD  55 SRTD  5 

SCTD  63 SCTD  36 

RCTD  61 RCTD  48 

SRCTD  64 SRCTD  28 
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Table  IV 

(continued) 

Panel C: Training Sample Priors:  January 1934 - December 1943 
Linear Model Prob Rank Regime-Switching Model Prob Rank 
Constant  64 Constant  32 

S  63 S  2 

R  62 R  30 

C  61 C  29 

T  60 T  28 

D  59 D  27 

SR  58 SR 1 1 

SC  57 SC  25 

ST  56 ST  24 

SD  55 SD  23 

RC  54 RC  22 

RT  53 RT  21 

RD  52 RD  20 

CT  51 CT  19 

CD  50 CD  18 

TD  49 TD  17 

SRC  48 SRC  16 

SRT  47 SRT  15 

SRD  46 SRD  3 

SCT  45 SCT  13 

SCD  44 SCD  12 

STD  43 STD  11 

RCT  42 RCT  10 

RCD  41 RCD  9 

RTD  40 RTD  8 

CTD  39 CTD  7 

SRCT  38 SRCT  6 

SRCD  37 SRCD  26 

SRTD  36 SRTD  4 

SCTD  35 SCTD  31 

RCTD  34 RCTD  14 

SRCTD  33 SRCTD  5 
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Panel D: Training Sample Priors:  January 1934 - December 1953 
Linear Model Prob Rank Regime-Switching Model Prob Rank 
Constant  64 Constant  32 

S  63 S  31 

R  62 R  30 

C  61 C  4 

T  60 T  28 

D  59 D  27 

SR  58 SR 1 1 

SC  57 SC  5 

ST  56 ST  24 

SD  55 SD  23 

RC  54 RC  2 

RT  53 RT  21 

RD  52 RD  20 

CT  51 CT  19 

CD  50 CD  18 

TD  49 TD  17 

SRC  48 SRC  3 

SRT  47 SRT  15 

SRD  46 SRD  6 

SCT  45 SCT  13 

SCD  44 SCD  12 

STD  43 STD  11 

RCT  42 RCT  10 

RCD  41 RCD  25 

RTD  40 RTD  16 

CTD  39 CTD  8 

SRCT  38 SRCT  22 

SRCD  37 SRCD  26 

SRTD  36 SRTD  7 

SCTD  35 SCTD  9 

RCTD  34 RCTD  14 

SRCTD  33 SRCTD  29 



40 

 

 

Posterior Mean Posterior Std. Dev. 

-2.7947 0.94368 

1.7780 0.30900 

0.42396 0.10582 

-0.19390 0.064647 

-1.1535 0.51885 

-0.76362 0.20475 

11.946 0.93903 

0.38132 0.085343 

0.78378 0.10681 

 

0 

0 

1 

1 

2 

2 

 

Table V 

Posterior Results for the Best Individual Model 
 

This  table  reports  posterior  results  for  the  following  best  individual  model  that  includes  lagged 

value-weighted CRSP  index  return  (VW)  and  Treasury  bill  rate  (TB). 

 
𝑉𝑊𝑡 = 𝑏0

0(1 − 𝑆𝑡) + 𝑏0
1𝑆𝑡 + 𝑏1

0(1 − 𝑆𝑡)𝑉𝑊𝑡−1 + 𝑏1
1𝑆𝑡𝑉𝑊𝑡−1 + 𝑏2

0(1 − 𝑆𝑡)𝑇𝐵𝑡−1 + 𝑏2
1𝑆𝑡𝑇𝐵𝑡−1 + 𝜀𝑡   

 
 
 
 

 

b0 

b1 

b0  

b1  

b0  

b1  

σ2 

q 

p 
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Asset Allocations and Utility Loss 
 

This table reports the asset allocations for stock market under the optimal regime switching model 

and alternative linear models. Panels A and B show results obtained under the base prior.  Panels 

C and D show results under the no-predictability prior. Utility loss is computed as the loss in an 

annual certainty equivalent risk-free rate perceived by investors who are forced to ignore regime 

switches and instead allocate funds using a suboptimal linear model. 

 
 

Panel A: Base Prior and Linear Model with Lagged Return and Short Rate 
 

A Asset Allocation: RS Model Asset Allocation:  Linear Model Utility Loss (%) 

5 -2.9824 -0.054971 38.383 

10 -1.4912 -0.027485 19.192 

Panel B: Base Prior and Linear Model with Lagged Short Rate 

A Asset Allocation: RS Model Asset Allocation:  Linear Model Utility Loss (%) 

5 -2.9824 -0.16705 35.501 

10 -1.4912 -0.083526 17.750 

Panel C: No-predictability Prior and Linear Model with Lagged Return and Short Rate 

A Asset Allocation: RS Model Asset Allocation:  Linear Model Utility Loss (%) 

5 -1.1275 -0.029494 4.6861 

10 -0.56375 -0.014747 2.3431 

Panel D: No-predictability Prior and Linear Model with Lagged Short Rate 

A Asset Allocation: RS Model Asset Allocation:  Linear Model Utility Loss (%) 

5 -1.1275 -0.14372 3.7618 

10 -0.56375 -0.071860 1.8809 
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Figure 1 

Posterior Density Plots 
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This figure plots the posterior densities for the model parameters as shown in equation (29). 
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Figure 2 

Regime Probabilities 
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The figure plots the probabilities of the bull market regime. 


